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Abstract :  Image compression deals with the task of reducing the size of the image without losing the visual quality of the image. 

Image compression has a number of applications as compression eases the task of storage and transfer of image data. The 

applications include medical, biometric, remote sensing, mailing services, web page maintenance, etc. The key steps in image 

compression are image transformation and coding. The different transformations include discrete sine, discrete cosine, haar, 

walsh, slant, KL, SVD and wavelet transforms. Image coding was done using different coding techniques including Arithmetic 

coding, Huffman coding, Block truncation coding, vector quantization, embedded zerotree wavelet coding (EZW) and set 

partitioning in hierarchical trees (SPIHT). Wavelet based transformations and lifting based wavelet transformations are found to 

be best transformation techniques. The coding techniques EZW and SPIHT are specially designed to operate on wavelet domain 

of image. These coding techniques, particularly, SPIHT coding was proved to be the best of state of art coding techniques. The 

JPEG2000 compression standard is well known compression standard accepted worldwide. The JPEG2000 compression standard 

has utilized the lifting based wavelets cdf5.3, cdf9.7. The JPEG2000 compression standard was originally designed for 

photographic images. Hence the performance of the JPEG2000 is not the optimum for other image classes like medical images, 

scanned documents, biometric images, satellite images, 3D (stereoscopy) images, etc. Hence in this research the goal is to devise 

new compression standard to compress a wide category of image classes. In this paper compression of different kinds of image 

was considered. The coding technique considered is SPIHT and transformation was done by different traditional wavelets. 

 

Index Terms - biometric, scanned docs, SPIHT, wavelet. 

I. INTRODUCTION 

For a 1-D wavelet transform, a vector of the wavelet coefficients can be divided into subbands after the wavelet decomposition 

as shown in the figure 1. Similarly, a block of the two-dimensional wavelet coefficients can be divided into subbands as shown in 

figure 2. An EZW encoder was specially designed by Shapiro [1] to use with wavelet transforms. In fact, EZW coding is more like 

a quantization method. It was originally designed to operate on images (2D-signals), but it can also be used on other dimensional 

signals. The EZW encoder is based on progressive encoding to compress an image into a bit stream with increasing accuracy. 

The SPIHT coder [2], [3] is a highly refined version of EZW algorithm and is a powerful image compression algorithm that 

produces an embedded bit stream from which the best reconstructed images in the mean square error sense can be extracted at 

various bit rates. Some of the best results – highest PSNR values for given compression ratios – for a wide variety of images have 

been obtained with SPIHT. Hence it has become the benchmark state of the art algorithm for image compression [4]. 

 
Fig 1: Subbands after the 1-D Wavelet Decomposition 
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Fig 2: Subbands in a Wavelet Transform Block after the 2-D Wavelet 

II. SET PARTITIONING IN HIERARCHICAL TREES (SPIHT) CODING ALGORITHM 

Set partitioning in Hierarchical Trees (SPIHT) is in principle similar to embedded zero tree wavelet (EZW) but the crucial 

differences being the way the coefficients are partitioned and how the significant information is conveyed to the decoder [5]. The 

SPIHT algorithm can briefly be outlined as set partitioning sorting algorithm and spatial orientation trees. 

a. Set partitioning sorting Algorithm  

One important fact used in the design of the sorting algorithm is that no need to sort all coefficients. Actually, an algorithm that 

simply selects the coefficients such that 2n ≤ Ci,j < 2n+1, with |‘n’| decremented in each pass is needed. Given n if |Ci,j| ≥ 2n+1 then a 

coefficient is significant, otherwise it is called insignificant. The sorting algorithm divides the set of pixels into partitioning subsets 

Tm and performs the magnitude test.  

If the decoder receives a no to that answer (the subset is insignificant), then it knows that all coefficients in Tm, are insignificant. 

If the answer is yes (the subset is significant), then a certain rule shared by the encoder and the decoder is used to partition Tm, into 

new subsets Tm and the significance test is then applied to the new subsets. To make clear relationship between magnitude 

comparisons and message bits, use the function 

Sn (T) =1;           Max {|Ci,j|} ≥ 2n 

             0;            otherwise                                                        

to indicate the significance of a set of coordinates T. To simplify the notation of single pixel sets, write Sn({I,j)}) as Sn(I,j). 

b. Spatial Orientation Trees  

The following sets of coordinates are used to present the new coding method. 

0(I,j): set of coordinates of all offspring of node (I,j); 

D(I,j): set of coordinates of all descendants of the node; 

H      : set of coordinates of all spatial orientation tree roots (nodes in the highest pyramid level); 

                            L(I,j) =  D(I,j) – O(I,j). 

For instance, except at the highest and lowest pyramid levels,  

O(I,j) = {(2i,2j), (2i,2j+1), (2i+1,2j),(2i+1,2j+1)} 

Use parts of the spatial orientation trees as the partitioning subsets in the sorting algorithm. The set partition rules are simply the 

following. 

1. The initial partition is formed with the sets ((I,j)) and D(I, j) for all (I,j) Є H. 

2. IF D(I,j) is significant, then it is partitioned into L (I,j) plus the four single element sets with (K,I) Є O(I, j). 

3. If L (I, j) is significant, then it is partitioned into the four sets D(K,I) with (K,I) Є O(I,j). 

 
Fig 3: Examples of parent offspring dependencies in the spatial orientation tree 

c. Important Features of SPIHT 

 Good image quality, high PSNR and low MSE. 

 Produces a fully embedded coded file. 

 Fast coding/decoding algorithm. 

 It can code with exact bit rate or distortion. 
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 Efficient combination with error protection. 

 It is optimized for progressive image transmission. 

 The SPIHT coder is also a highly refined version of EZW algorithm and is a powerful image compression 

algorithm. 

 Bit level compression. 

 
Fig 4: Block diagram of encoder & decoder part of SPIHT algorithm. 

The following steps are involved in the compression algorithm of discrete wavelet Transform (DWT). 

1. Read the input image (Color/Monochrome). 

2. Apply forward DWT. 

3. Obtain cutoff value based on given percentage of coefficients to be retained. 

4. Set small coefficients to zero. 

5. Apply inverse DWT to the result of Step 4. 

III. CLASSICAL WAVELETS 

The Fourier analysis is based on decomposing a function per sine waves with different frequencies. Similarly, the wavelet 

analysis is the decomposition of a function onto shifted and scaled versions of the basic wavelet. A wavelet is a wave shaped 

function having a limited length with a zero mean value. This means that a wavelet decreases fast enough in the frequency domain, 

and that  

  0)()0(ˆ dxx                                                         

which is a consequence of the condition for the existence of the inverse wavelet transform. Unlike a sine wave, wavelets are 

generally irregular and asymmetrical. 

 
Fig 5: Sine function and a wavelet 

It is intuitively clear that functions with sharp changes can be analyzed better using short irregular waves than with a smooth 

infinite sine. The wavelet basis {ψj,k(x)}j,k is generated by the translation and dilatation ψ(2-j x - k) of the basic ("mother") wavelet  

ψ(x). If the basic wavelet ψ(x) (ψ(x) ≡ ψ 0,0(x)) starts at the moment of x = 0 and ends at the moment of x = N - 1, the shifted 

wavelet ψo,k starts at the moment of x = k and ends at the moment of x = k + N - 1. The scaled wavelet ψj,0 starts at the moment of x 

= 0 and ends at the moment of x = 2j (N - 1). Its graph is scaled (compressed or expanded, depending of the sign of j) by a factor of 

2-j, while the graph of the wavelet ψ0,k is translated to the right by k, if k > 0, 

                         Scaling   ψj,0(x) = 2-j/2 ψ(2-jx),                                                               

                         Translation ψ0,k(x) =  ψ (x - k).                                                              

The basis wavelet is generated by scaling the basic wavelet j times and shifting it by k, 

                              ψj,k(x) = 2-j/2 ψ(2-j x - k)                                                                    

http://www.jetir.org/


© 2018 JETIR May 2018, Volume 5, Issue 5                                            www.jetir.org  (ISSN-2349-5162)  

JETIR1805791 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 259 

 

The multiplier 2-j /2 is a normalizing factor, so that the L2 norm of the wavelet is equal to one. The space of details on the j-th 

resolution level Wj contains functions that are linear combinations of wavelets ψj,k(x). 

 

1-D Continuous wavelet transform 

The 1-D continuous wavelet transform is given by: 

Wf (a, b) = 




dtttx ba )()( ,                                           

The inverse 1-D wavelet transform is given by:   

x (t) =  





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    is the Fourier transform of the mother wavelet (t). C is required to be finite, which leads to one of the required 

properties of a mother wavelet. Since C must be finite, then 0)0(   to avoid a singularity in the integral, and thus the )(t  

must have zero mean. This condition can be stated as 




dtt)( = 0 and known as the admissibility condition. 

2-D Discrete wavelet transform 

The 1-D DWT can be extended to 2-D transform using separable wavelet filters. With separable filters, applying a 1-D 

transform to all the rows of the input and then repeating on all of the columns can compute the 2-D transform. When one-level 2-D 

DWT is applied to an image, four transform coefficient sets are created. As depicted in figure 6 (c), the four sets are LL, HL, LH, 

and HH, where the first letter corresponds to applying either a low pass or high pass filter to the rows, and the second letter refers to 

the filter applied to the columns.   

The Two-Dimensional DWT (2D-DWT) converts images from spatial domain to frequency domain. At each level of the 

wavelet decomposition, each column of an image is first transformed using a 1D vertical analysis filter-bank. The same filter-bank 

is then applied horizontally to each row of the filtered and subsampled data. One-level of wavelet decomposition produces four 

filtered and subsampled images, referred to as subbands. 

 
Fig 6: Block Diagram of DWT (a) Original Image (b) Output image after the 1-D applied on Row input (c) Output image after the 

second 1-D applied on row input 

 
Fig 7: DWT for Lena image (a) Original Image (b) Output image after the 1-D applied on column input (c) Output image after the 

second 1-D applied on row input 
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The upper and lower areas of figure 7(b), respectively, represent the low pass and high pass coefficients after vertical 1D-DWT 

and subsampling. The result of the horizontal 1D-DWT and subsampling to form a 2D-DWT output image is shown in figure 7(c). 

Multiple levels of wavelet transforms can be used to concentrate data energy in the lowest sampled bands. Specifically, the LL 

subband in Figure 6(c) can be transformed again to form LL2, HL2, LH2, and HH2 subbands, producing a two-level wavelet 

transform.  

An (R-1) level wavelet decomposition is associated with R resolution levels numbered from 0 to (R-1), with 0 and (R-1) 

corresponding to the coarsest and finest resolutions. The straight forward convolution implementation of 1D-DWT requires a large 

amount of memory and large computation complexity. An alternative implementation of the 1D-DWT, known as the lifting 

scheme, provides significant reduction in the memory and the computation complexity. Lifting also allows in-place computation of 

the wavelet coefficients. Nevertheless, the lifting approach computes the same coefficients as the direct filter-bank convolution. To 

employ wavelets for image decomposition is replaced with the notion of “time”, which has heretofore served as our free variable, 

with “spatial position”. In addition the wavelet framework has to deal with the two-dimensional signals. Although two-dimensional 

wavelets can be constructed, a more popular approach is to transform images using one-dimensional separable wavelets as 

suggested by Mallat [6], Antonini et al. [7] and [8]-[12]. A number of compression schemes were devised using wavelets. Both 

image and video compression schemes were devised [13]-[17]. Using separable wavelets means that one can apply the wavelet 

transform first in a direction and then transform the result again in the other direction. In figure 4 first apply DWT to every row (x-

direction) of an image, relocating the scaling coefficients to the left side and the wavelet coefficients to the right side as before. 

Afterwards apply DWT in the y-direction on the resulting image, relocated scaling coefficients to the top.  

 
Fig 8: Two-dimensional transform with separable wavelets 

 
Fig 9: 2-level decomposition of LENA image 

Different filter banks can be used for each direction if desired. The upper left quadrant will, after both transformations, contain 

the original image at half of the resolution, while the other quadrants contain the refinement coefficients necessary to bring the 

smaller image back to full scale. Each of the quadrants have their own basis functions, thus the basis for separable 2D-transforms 

consists of one scaling function Φx Φy and three wavelet functions ΨxΦy, ΦxΨy and ΨxΨy. After executing DWT in both directions, 

the algorithm can be recursively applied to the lower resolution image. Figure 9 shows the wavelet coefficients of LENA after 2 

levels of decomposition with Daubechies 4-tap wavelet. Recognize the original image in the upper left, now scaled down to 25% 

resolution. The wavelet coefficients, especially those from level 1, are so small that they are almost imperceptible (the gray-levels 

have been contrast enhanced for improved viewing). 

This illustrates the efficiency of wavelet transforms for energy compaction. Interestingly (and quite unlike the Fourier 

transform) the wavelet coefficient quadrants visually resemble the high-resolution details of the image. The lower left quadrant has 

mostly details for the x-direction, while the upper right has details for the y-direction. The lower right quadrant has details from 

both directions (diagonal) but they are almost too fine to see. (The other two wavelet quadrants paint in broader strokes because 

their bases contain a scaling function). The actual compression is accomplished by discarding coefficients. For instance, discard 

some of the quadrants in the decomposition, but a better strategy would be to selectively discard coefficients based on their 

magnitude. Since larger coefficients probably have more impact on the reconstructed image, keep those and rather discard the 
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smaller values. This is known as thresholding. With “hard thresholding” a tolerance limit T should be selected and discard all 

coefficients with absolute value smaller than T. A variation on this scheme is called “quantile thresholding” in which a percentage 

P will be selected and smallest P percent of the values will be discarded. With “soft thresholding” the magnitude of all coefficients 

are reduced by the amount T. 

 
           (a)                                                        (b)                                                    (c) 

Fig 10: Lena image compressed with Daubechis 4-tap wavelet. (a) Original (left), (b) 80% compressed image and (c) 96% 

compressed image 

The coefficients that are smaller than this value are reduced to zero while all the rest are brought closer to zero. Instead of 

subtraction, also, use of integer division by Q is followed. Again, all values smaller Q than would be reduced to zero, while the rest 

are made smaller. This strategy would also limit the number of different values for coefficients, which in effect could make coding 

more efficient, since the number of bits required to code the values can be reduced. The process of limiting the set of possible 

values used is known as quantization. An even more advanced approach is to use different values of T or Q for different subbands. 

Since the human visual system is less sensitive to high frequencies, for instance use a greater threshold-value or a coarser 

quantization for the fine-detail subbands. An example of wavelet compression is shown in figure 10.  

In the middle picture the smallest 80% of the wavelet coefficients have been discarded before reconstructing the image (hard 

threshold). At this compression level there is no perceivable reduction in image quality. The only visual effect seems to be a 

reduction of noise and a slight smoothing of texture. The rightmost picture is reconstructed from only 4% of the original 

coefficients. The image is now composed of 2621 wavelets of different sizes and positions, as compared to 65536 pixels in standard 

representation. Compression artifacts have now become apparent, but even at this high level of compression the image is quite 

recognizable. In comparison, a JPEG representation at this compression level would on average synthesize each patch of only 2.5 

basis patterns. 

IV. BASIS FUNCTIONS OF TRADITIONAL WAVELETS 

a. Haar 

Any discussion of wavelets begins with Haar wavelet, the first and simplest. Haar wavelet is discontinuous, and resembles a 

step function. It represents the same wavelet as Daubechies db1. The basis function of Haar wavelet is shown in figure 11. 

 
Fig 11: Basis function of Haar Wavelet 

b. Daubechies 

Ingrid Daubechies, one of the brightest stars in the world of wavelet research, invented what are called compactly supported 

orthonormal wavelets -- thus making discrete wavelet analysis practicable. The names of the Daubechies family wavelets are 

written dbN, where N is the order, and db the "surname" of the wavelet. The db1 wavelet, as mentioned above, is the same as Haar 

wavelet. The figure 12 shows the wavelet functions of the next nine members of the family. 

 
Fig 12: Basis functions of Daubechies Wavelet Family 

http://www.jetir.org/


© 2018 JETIR May 2018, Volume 5, Issue 5                                            www.jetir.org  (ISSN-2349-5162)  

JETIR1805791 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 262 

 

c. Biorthogonal 

This family of wavelets exhibits the property of linear phase, which is needed for signal and image reconstruction. By using two 

wavelets, one for decomposition (on the left side) and the other for reconstruction (on the right side) instead of the same single one, 

interesting properties are derived. The basis functions of Biorthogonal wavelets are shown in figure 13. 

 

d. Coiflet 

Coiflet wavelets are built by I. Daubechies on the request of R. Coifman. The wavelet function has 2N moments equal to 0 and 

the scaling function has 2N-1 moments equal to 0. The two functions have a support of length 6N-1. The figure 14 shows the basis 

functions of the family of Coiflet wavelets. 

e. Symlet 

The symlets are nearly symmetrical wavelets proposed by Daubechies as modifications to the db family. The properties of the 

two wavelet families are similar. The figure 15 shows the wavelet functions. 

 
Fig 13: Basis functions of Bi-orthogonal Wavelet Family 

 
Fig 14: Basis functions of Coiflet Family 
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Fig 15: Basis functions of Symlet Family 

f. Di-Meyer 

The Meyer wavelet and scaling function are defined in the frequency domain. The discrete version of Meyer wavelet is usually 

written as Di-meyer of which the basis function is plotted in the figure 16. 

 
Fig 16: Basis function of Discrete Meyer Wavelet 

V. SIMULATION RESULTS 

In this section simulation results of compression of different kinds of images are presented. The image category includes 

biometric images, medical images, scanned documents, satellite images and 3D images. The biometric images are useful for 

verification of individuals in different applications. The thumb print images are useful in identifying the criminals. The biometric 

images are used in authenticating people in offices, colleges and many institutions. Usually it requires the storage of large set of 

images. Hence the compression of these images is crucial. Medical images are useful in treatment of different anomalies. The 

transfer and storage of these images plays an important role in modern medical institutes. Scanned documents from fax machines, 

scanners, phone scanners are common in the current era, and the compression of the documents is important. Satellite images 

contains images of earth surfaces, ocean waves, space phenomena. These images are usually processed by scaling them according 

to the capturing element characteristics. 3D images includes the depth axis logically but physically these are 2D images only. The 

size of the 3D and satellite images is high. Tables 1 to 5 gives the performance of SPIHT and traditional wavelets on biometric, 

medical, scanned, satellite and 3D images respectively. The figure 16 to 22. 

TABLE I: Performance results of Compression of Biometric images using different wavelets with SPIHT 

Performance results of Compression of Biometric images using different wavelets with SPIHT 

  Thumb Print – 1 Thumb Print – 2 Iris – 1 Iris – 2 Retina 

  CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR 

Haar 2.1 29.96 2.25 29.95 2.41 36.77 2.33 36.59 2.85 39.25 

db5 1.97 29.73 2.08 29.91 2.29 37.37 2.18 36.86 2.72 35.2 

bior 1.3 1.93 15.44 2.07 15.76 2.2 33.81 2.13 31.13 2.58 33.71 

coif5 1.76 21.99 1.87 19.38 2.01 36.35 1.91 34.3 2.4 35.24 

sym8 1.9 23.95 2.01 21.85 2.19 36.82 2.08 35.46 2.63 35.24 

Dmey 1.13 22.6 1.22 19.82 1.29 36.43 1.21 34.4 1.54 35.27 

 

TABLE II: Performance results of Compression of Medical images using different wavelets with SPIHT 

Performance results of Compression of Medical images using different wavelets with SPIHT 

  Image – 1 Image -2  Image -3 Image -4 Image -5 

  CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR 

Haar 2.69 38.19 2.14 36.09 2.63 37.4 2.68 38.84 2.93 38.87 

db5 2.75 38.53 2.06 36.38 2.52 33.4 2.54 34.01 2.75 33.78 

bior 1.3 2.61 36.56 1.97 25.49 2.39 26.33 2.42 24.48 2.65 24.41 

coif5 2.42 37.87 1.81 31.44 2.25 32.21 2.22 31.43 2.42 30.85 

sym8 2.63 38.13 1.98 33.04 2.44 32.82 2.43 32.81 2.63 32.97 

Dmey 1.58 37.94 1.15 31.82 1.44 32.3 1.4 32.67 1.51 31.41 

 

TABLE III: Performance results of Compression of Scanned doc images using different wavelets with SPIHT 

Performance results of Compression of Scanned document images using different wavelets with SPIHT 

  Image - 1 Image -2  Image -3 Image -4 Image -5 

  CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR 

Haar 3.04 39.68 2.6 37.22 2.88 42.89 2.38 30.27 2.53 36.98 

db5 2.85 38.37 2.39 37.29 2.86 42.44 2.04 29.9 2.24 36.55 
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bior 1.3 2.96 32.43 2.37 28.42 2.82 38.15 2.15 19.02 2.31 26.5 

coif5 2.54 32.32 2.11 31.64 2.49 40.06 1.81 21.21 1.96 29.88 

sym8 2.73 34.36 2.29 33.97 2.74 41.09 1.96 23.55 2.14 31.8 

Dmey 1.57 32.54 1.35 29.85 1.58 40.13 1.17 21.16 1.22 30.15 

 

TABLE IV: Performance results of Compression of Satellite images using different wavelets with SPIHT 

Performance results of Compression of Satellite images using different wavelets with SPIHT 

  Image – 1 Image -2  Image -3 Image -4 Image -5 

  CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR 

Haar 2.18 36.06 2.95 39.11 2.74 38.09 2.85 38.79 2.25 36.4 

db5 2.04 36.23 3.29 35.28 2.88 34.55 3.17 34.56 2.05 36.26 

bior 1.3 1.99 26.88 2.87 36.5 2.66 37.97 2.56 38.24 2.19 26.11 

coif5 1.78 31.76 2.88 35.28 2.77 34.6 2.54 34.61 1.91 39.65 

sym8 1.96 33.27 3.16 35.28 3.03 34.61 2.78 34.64 2.09 31.74 

Dmey 1.13 31.96 1.84 35.31 1.76 34.61 1.61 34.64 1.23 29.74 

 

TABLE V: Performance results of Compression of 3D images using different wavelets with SPIHT 

Performance results of Compression of 3D images using different wavelets with SPIHT 

  Image – 1 Image -2  Image -3 Image -4 Image -5 

  CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR 

haar 2.13 35.86 2.56 37.82 2.71 38.3 2.85 39.13 2.71 38.51 

db5 2.01 36.02 2.76 38.92 2.52 33.06 2.81 39.13 2.53 38.72 

bior 1.3 1.95 24.79 2.5 27.1 2.45 29.47 2.78 32.23 2.46 31.81 

coif5 1.75 30.88 2.23 35.29 2.19 32.15 2.48 35.95 2.23 35.74 

sym8 1.93 32.52 2.66 36.67 2.4 32.69 2.7 37.07 2.43 37.01 

dmey 1.12 31.07 1.4 35.57 1.4 32.2 1.6 35.95 1.43 35.86 

 

 

 
Fig. 16 Screen shot of Compression of Biometric image - 1 

http://www.jetir.org/


© 2018 JETIR May 2018, Volume 5, Issue 5                                            www.jetir.org  (ISSN-2349-5162)  

JETIR1805791 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 265 

 

 
Fig. 17 Screen shot of Compression of Biometric image - 2 

 

 
Fig. 18 Screen shot of Compression of Medical image 

 

 
Fig. 19 Screen shot of Compression of Scanned doc imag 
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Fig. 20 Screen shot of Compression of Satellite image - 1 

 

 
Fig. 21 Screen shot of Compression of Satellite image – 2 

 

 
Fig. 22 Screen shot of Compression of 3D image 

VI. CONCLUSIONS 

In this paper an attempt has been made to compress a wide category of images using traditional wavelets. Biometric, medical, 

scanned documents, satellite and 3D images are considered. The traditional wavelets haar, daubeuchies, coiflet, symlet and 

demeyer wavelets are considered. The coding was done by SPIHT coding. A large number of images are considered under each 

category and results of 5 images under each category is presented in the paper. The performance of the compression scheme is 
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almost similar with all the wavelets except demeyer wavelet. The performance of haar wavelet is better in comparison with that of 

the other wavelets. The average value of compression ratio with the Biometric, medical, scanned documents, satellite and 3D 

images are 2.04bpp, 2.26bpp, 2.27bpp, 2.37bpp and 2.25bpp. The average value of peak signal to noise ratio with the Biometric, 

medical, scanned documents, satellite and 3D images are 30.69dB, 33.41dB, 32.99dB, 34.75dB and 34.58dB. The compression 

performance is expected to be improved if better transformation and coding techniques are employed. 
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